

Oil in Water Fluorescence and Backscattering Relationships

Ian Walsh

Sea-Bird Scientific Ocean Research

Brian Robinson

Fisheries and Oceans Canada, Bedford Institute of Oceanography

John Koegler

Sea-Bird Scientific Ocean Research

Robyn Conmy

3USEPA/NRMRL/LRPCD

February, 2016

Experimental Considerations

The particle size distribution impacts:

Fluorescence

Backscattering

Forward Scattering

Backscattering and forward scattering demonstrate coherent responses

Fluorescence and backscattering signals can be used to:

Measure dispersant effectiveness

Quantify changes in the particle distribution

DWH Profiles - Pelican

Situational Outline

- UV A fluorometers: relatively weak LEDs
 - Wide band filters on the detector (90 nm)
 - Higher gain (amplification) on the detector
 - Time average (not ECO)
 - Signal to noise is low relative to other sensors
 - Fluorometers worked ok for the DWH because the spill was so large
 - Lots of room for improvement, so we designed a new instrument

New Instrument – SeaOWL UV-A

Higher Resolution : Better Signal to Noise Improved Electronics Design

Materials (FDOM)
Optics

Wider Range: One size fits all

Retain high resolution

Decrease chance of saturation

Multiple sensors in one instrument
Co-locating oil discrimination factors
Ease of use
Economy

SeaOWL UV-A v ECO Optics

ECO Sensing Volume:

Intersecting conical volumes
Energy return:
Approximately
1 cm³, 1 cm face

SeaOWL UV-A Sensing Volume:

Illumination conical volume inside wide angle detector volume:

Greater depth of field

Improvement in Sensitivity

SeaOWL FDOM has 4 – 7 x resolution of ECO CDOM

SeaOWL dynamic wide range technology makes saturation highly unlikely

Comparison Test on Navis Float in Labrador Sea demonstrated improved resolution

Detecting Oil: Fluorescence

Fluorescence:

The emission of light by a substance that has absorbed light or other electromagnetic radiation.

- Fluorometers excite at a specific wavelength
- Target emits light at a longer wavelength, lower energy, than the absorbed radiation
- Signal is a function of concentration
- Signal is Isotropic
- Signal is a function of the dispersion of the target in the volume

Detecting Oil Droplets

Backscattering:

The portion of light scattered in the backward direction at a particular angle to the detector

- Backscattering sensors illuminate particles in the water at a specific wavelength
- Signal is a function of the angle
- Signal is a function of concentration (ESD) and particle size (PSD)

Testing at COOGER

7/17/15

Advanced Oil Sensor Testing SeaOWL UV-A v ECO

ANS DOR 1:200

ANS DOR 1:100

Advanced Oil Sensor Testing SeaOWL UV-A v ECO

ANS DOR 1:20

ANS DOR 1:100

Advanced Oil Sensor Testing SeaOWL UV-A v ECO

Increased Resolution

We estimate the relative increase in resolution between the ECO CDOM fluorometer calibrated for oil and the SeaOWL UV-A by comparing the calibrations of the instruments using quinine sulphate dehydrate.

Resolution for the ECO CDOM: 0.0306 QSDE/ count

Resolution for the SeaOWL UV-A. 0.0065 QSDE/ count

Applying the ECO CDOM crude oil calibration from Conmy et al., 2014 yields a scale factor in terms

of oil concentration:

The estimated limit of detection (LOD) for the ECO CDOM fluorometer is < 300 ppb crude oil (Conmy et al., 2014), i.e. 30 counts.

Resolution for the ECO CDOM: 10 ppb crude oil/ count

Using the same count to LOD relationship, we estimate that the LOD for the SeaOWL is < 67 ppb

Resolution for the SeaOWL UV-A: 2.2 ppb crude oil/ count

Advanced Oil Sensor Testing SeaOWL UV-A v backscattering

0.005

13.2

13.7

14.2

16.7

17.2

17.7

× SeaOWI, bb700 adj sm

+ SeaOWL Oil adj sm

30

Advanced Oil Sensor Testing SeaOWL UV-A v backscattering

ANS DOR 1:20

ANS DOR 1:100

Advanced Oil Sensor Testing SeaOWL UV-A v backscattering

Oil Plume Comparison

ANS DOR 1:200

ANS DOR 1:100

ANS DOR 1:20

Response By DOR

Increased dispersant:

Increases fluorescence and backscattering signals with a critical point < 100 DOR

Slope By DOR

R2 By DOR

Increased dispersant:

Decreases variability in particle size distribution and dissolved to droplet ratio with a critical point < 200 DOR

Advanced Oil Sensor Testing LISST TPV v backscattering

ANS DOR 1:200

ANS DOR 1:100

Advanced Oil Sensor Testing LISST TPV v backscattering

ANS DOR 1:20

ANS DOR 1:100

Response By DOR

Maximum Values By DOR

Increased dispersant:

Increases apparent concentration with a critical point < 100 DOR

Increased dispersant:

Increases apparent concentration
Decreases volume median diameter
with critical point < 100 DOR

Maximum Values By DOR

Conclusions

The dispersant ratio modifies the particle size distribution, which impacts:

Fluorescence

Backscattering

Forward Scattering

Backscattering and forward scattering demonstrate coherent responses, but with different critical points

If mass concentration is constrained, fluorescence and backscattering signals can demonstrate dispersant effectiveness

