SeaOWL UV-A™ Oil in Water Locator

Based on the highly successful Sea-Bird Scientific ECO sensor, Sea-Bird Scientific has developed the SeaOWL UV-A™ oil-in-water sensor, an industry-leading oil-detection technology with 5x optical resolution improvement over its predecessor.

The SeaOWL UV-A™ SLC version is specifically designed for integration with the Teledyne Webb Research Slocum Glider. SeaOWL UV-A™ measures crude oil-in-water using the same UV-A excitation and blue emission wavelengths (430 nm/465 nm) currently used in the ECO CDOM fluorometer. The SeaOWL UV-A™ improves the resolution and range of the ECO with a greater depth of field, optimized electronics and dynamic gain stage modulation. The new dynamic gain provides industry leading sensitivity across a large detection range making saturation unlikely in even the most heavily impacted environments. The compact SeaOWL UV-A™ design also includes chlorophyll fluorescence and 700 nm backscattering measurements to discriminate crude oil from phytoplankton and other natural sources of FDOM.

Features
- Industry leading optical resolution
- Wide dynamic gain prevents measurement saturation even within heavily impacted environments
- Time parameters in a single sensor: chlorophyll, backscattering, and Fluorescent Dissolved Organic Matter (FDOM)
- Backscattering and chlorophyll fluorescence provide discrimination of crude oil from phytoplankton and other natural sources of FDOM
- OEM option for easy integration with the TWR Slocum Glider

OCR 500 Multispectral Radiometer

The OCR-500 Series Radiometers are digital optical sensors that combine precision optics and high performance microelectronics, designed for applications where performance, size, and power are key constraints. The OCR 500 is usable as a stand-alone device or in a networked environment as part of a larger system, providing radiance and irradiance measurements over multiple standard wavelengths from 400 – 865 nm.

Features
- Irradiance and Radiance measurements
- Selected wavelengths from 400 - 865 nm
- Fully characterized cosine response
- Custom, low fluorescence filters
- Networking capability
- Data logging and processing software
- Fast sampling rate (7 - 24 Hz options)

Options
- Four-channel and seven-channel discrete wavelength options available
- UV wavelengths available: 305, 325, 340 & 380 nm
- Compatible with the BioShutter anti-biofouling solution

AUV/ROV Sensor Options

Glider Payload CTD (GPCTD)
A modular, low-power CTD designed for easy integration with autonomous gliders. Provides continuous sampling with sensors based on Sea-Bird’s field proven Argo Float CTD.

SEB 49 CTD
A compact CTD intended for integration with moving platforms. The SEB 49 features an integrated pump and sensors with TC-ducted flow to minimize dynamic sampling errors.

Deep SUNA Nitrate Sensor
A redesign of the SUNA V2 Nitrate sensor optimized for AUV integration, featuring the same quality of real-time nitrate measurements in a depth rated 2000 m housing.

SeaOWL UV-A™ Oil in Water Locator
A precision optical sensor for detecting oil in water, with a large detection range and ability to discern crude oil from other natural sources of UV-A excitation. Also available with a housing designed for integration with Slocum Gliders.

ECO-Puck Fluorometer and Backscattering Sensor
A miniaturization of the popular ECO line of optical sensors, designed for applications where space and power are limited. Available in multiple configurations for measuring Fluoroscence, Turbidity, and Backscattering.

OCR 500 Multispectral Radiometer
While Sea-Bird Scientific originally designed most sensors for stand-alone applications, we have redesigned and miniaturized popular product lines meet the specific operational requirements of unmanned research platforms. A 1 kg CTD can now replace a 10 kg CTD while maintaining the same accuracy, and a precision optical sensor can now take up half the space while recording the same data channels.

Autonomous and remotely operated underwater vehicles are rapidly evolving to fill scientific niches, many with capabilities otherwise unattainable through traditional manned research at a fraction of the operating cost. Sea-Bird Scientific offers a line of sensors uniquely designed for integration with various unmanned underwater vehicles, expanding data potential and opening new doors for unique research opportunities.
Evolved from the technology behind the fleet of Argo Float CTDs, the Sea-Bird Scientific Glider Payload CTD (GPCTD) is a low-power package designed for integration with autonomous gliders. Each GPCTD comes with a modified SBE 5 pump. Data are readout in engineering units for easy integration into existing systems. The GPCTD can optionally be equipped with an SBE 43F Dissolved Oxygen sensor.

The GPCTD consumes only 175 mW when recording at 1 sample/second. One Alkaline D cell can operate the CTD for 114 hours of continuously pumped data collection. When installed in the glider, the T-C intake sail sits outside of the glider’s boundary layer to minimize sampling error while a pressure-proof casing houses the GPCTD’s electronics for installation within the glider’s flooded volume.

Features
- Conductivity, temperature, pressure, and (optional) dissolved oxygen (modular SBE 43F DO sensor)
- Pressure-proof module allows for exchange of CTD (and DO sensor) without opening the glider pressure hull
- RS-232 interface, internal memory, and real-time output
- Four sampling modes:
 - Continuous (1 Hz)
 - Fast (16 Hz, 16 samples/second/poll)
 - Slow (10-1000 sec intervals; CTD only)
- Unique flow path, pumping regimen, and (optional) expendable anti-foulant device, for maximum bio-fouling protection
- Programmable real-time processing (filtering, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

Options
- Strain-gauge pressure sensor in 1 of 4 ranges (up to 2000 m)
- Modular SBE 43F Dissolved Oxygen Sensor in 600 m or 7000 m housing
- Plastic (250 m) or titanium (7000 m or 10,500 m) housing

The Sea-Bird Scientific SBE 49 FastCAT CTD is a miniaturization of profiling CTDs often used in shipboard operations, providing a solution for applications that require a compact CTD. With a fully integrated pump and temperature/conductivity/pressure sensors, the SBE 49 is a flexible option for uses ranging from small autonomous vehicles to standard profiling applications, with data quality comparable to much larger CTD packages.

The SBE 49 is able to sample with simple RS-232 commands and can automatically begin sampling at 16 Hz upon receiving power from an external source. Data output can be configured for converted engineering units with programmable real-time data connections for applications where post-processing is not feasible.

Features
- Conductivity, temperature, and pressure at 114 hours of continuously pumped data collection.
- Integral pump and T-C ducted flow to minimize salinity spiking
- RS-232 interface, no memory or batteries
- Unique flow path, pumping regimen, and expendable anti-foulant devices

Options
- Plastic (250 m) or titanium (7000 m or 10,500 m) housing
- User selectable sample rate (up to 8 Hz)
- Low power, compact design for integration with Digital RS-232 output
- Fully potted design

Available Configurations
- Fluorometer (FL): Single-wavelength measurement of your choice of chlorophyll-a, CDOM, phycoerythrin, phycoerythrin, uranine (fluorescein), or rhodamine
- Combination Fluorometer-Turbidity Sensor (FUTU): Measures chlorophyll-a in μg/l and turbidity in NTU
- Single-wavelength Scattering Meter (B(0)): Measures optical scattering at 100, 125, and 150 degrees
- Volume Scattering Function Meter (VSF): Measures optical scattering at 117 degrees at your choice of 470, 532, or 650 nm wavelengths
- Combination Fluorometer-Turbidity Sensor (FUTU)
Evolved from the technology behind the fleet of Argo Float CTDs, the Sea-Bird Scientific Glider Payload CTD (GPCTD) is a low-power package designed for integration with autonomous gliders. Each GPCTD comes with a modified SBE 5 pump. Data are collected in engineering units for easy integration into existing systems. The GPCTD can optionally be equipped with an SBE 43F Dissolved Oxygen sensor.

Features
- Conductivity, temperature, pressure, and (optional) dissolved oxygen (modular SBE 43F DO sensor)
- Pressure-proof module allows for exchange of CTD and DO sensor without opening the glider pressure hull
- RS-232 interface, internal memory, and real-time output
- Four sampling modes:
 - Continuous (1 Hz)
 - Fast Interval (1-10 sec intervals)
 - Slow Interval (10-60 sec intervals; CTD only)
- Unique flow path, pumping regimen, and expendable anti-foulant device, for maximum bio-fouling protection
- Programmable real-time processing (calibration, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

Options
- Plastic (250 m) or titanium (7000 m or 10,500 m) housing
- XSG/AG or wet-pluggable MCBH connectors
- Strain-gauge pressure sensor in 1 of 4 ranges (up to 2000 m)
- Conductivity, temperature, and pressure at 16 Hz (16 samples/second) or polled sample acquisition
- Integral pump and T-C ducted flow to minimize salinity spiking
- RS-232 interface, no memory or batteries
- Unique flow path, pumping regimen, and expendable anti-foulant device, for maximum bio-fouling protection
- Programmable real-time processing (calibration, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

SBE 49 FastCAT CTD
The Sea-Bird Scientific SBE 49 FastCAT CTD is a miniaturization of profiling CTDs often used in shipboard operations, providing a solution for applications that require a compact CTD. With a fully integrated pump and temperature/conductivity/pressure sensors, the SBE 49 is a flexible option for uses ranging from small autonomous vehicles to standard profiling applications, with data quality comparable to much larger CTD packages.

The SBE 49 is able to sample with simple RS-232 commands and can automatically begin sampling at 16 Hz upon receiving power from an external source. Data output can be configured for converted engineering units with programmable real-time data connections for applications where post-processing is not feasible.

Features
- Conductivity, temperature, and pressure at 16 Hz (16 samples/second) or polled sample acquisition
- Integral pump and T-C ducted flow to minimize salinity spiking
- RS-232 interface, no memory or batteries
- Unique flow path, pumping regimen, and (optional) expendable anti-foulant devices
- Programmable real-time processing (alignment, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

Options
- Plastic (250 m) or titanium (7000 m or 10,500 m) housing
- XSG/AG or wet-pluggable MCBH connectors
- Strain-gauge pressure sensor in 1 of 4 ranges (up to 2000 m)
- Conductivity, temperature, and pressure at 16 Hz (16 samples/second) or polled sample acquisition
- Integral pump and T-C ducted flow to minimize salinity spiking
- RS-232 interface, no memory or batteries
- Unique flow path, pumping regimen, and expendable anti-foulant device, for maximum bio-fouling protection
- Programmable real-time processing (calibration, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

Deep SUNA Nitrate Sensor
The Deep SUNA is a redesign of the SUNA V2 for easy integration with AUVs of all types, incorporating the proven MBARI-ISUS nitrate measurement technology in a streamlined package. Deep SUNA provides real-time, chemical-free nitrate calculations in deep ocean environments using UV absorption technology.

Sea-Bird Scientific designed the Deep SUNA’s aluminum housing for installation on a moving platform to minimize any effects on the vehicle’s speed.

Features
- Real-time nitrate calculation
- True-time temperature/salinity compensation
- Full UV spectrum for maximum accuracy
- Autonomous Profiling Float (APF) operating mode
- Corrosion-proof anodized aluminum housing with 2000 meter depth rating
- Simple software-based, in-field reference checks
- Accuracy and stability over a wide range of environmental conditions
- Adaptive sampling intelligence

ECO-Puck Fluorometer and Backscattering Sensor
The Sea-Bird Scientific ECO-Puck is a miniaturization of the popular ECO sensor, providing a simple package for applications where space and power are limited. Available in single, dual, and three-channel configurations, the ECO-Puck options cover the same optical sensors as the standard line of ECO sensors, providing multiple parameters and wavelengths for a wide range of uses.

Features
- Fully potted design
- Low power, compact design for integration with Digital RS-232 output
- User selectable sample rate (up to 8 Hz)

Available Configurations
- Fluorometer (FL): Single-wavelength measurement of your choice of chlorophyll-a, CDOM, phycoerythrin, phycoerythrin, uranine (fluorescein), or rhodamine
- Combination Fluorometer-Turbidity Sensor (FUTS)
- Measures chlorophyll-a, pL, and turbidity in NTU
- Single-wavelength Scattering Meter (BS): Measures optical scattering at 100, 125, and 150 degrees
- Measures optical scattering at 117 degrees at your choice of 470, 510, and 650 nm wavelengths
- Volume Scattering Function Meter (VSF)
- Triple-Measurement Meter (Triple)
- 2 scattering & 1 fluorescence, 1 scattering & 2 fluorescences, or 3 fluorescence measurements

Options
- Strain-gauge pressure sensor in 1 of 4 ranges (up to 2000 m)
- Modular SBE 43F Dissolved Oxygen Sensor in 600 m or 7000 m housing
- Plastic (250 m) or titanium (1500 m) housing

SBE 49 FastCAT CTD
The SBE 49 is a miniaturization of profiling CTDs often used in shipboard operations, providing a solution for applications that require a compact CTD. With a fully integrated pump and temperature/conductivity/pressure sensors, the SBE 49 is a flexible option for uses ranging from small autonomous vehicles to standard profiling applications, with data quality comparable to much larger CTD packages.

The SBE 49 is able to sample with simple RS-232 commands and can automatically begin sampling at 16 Hz upon receiving power from an external source. Data output can be configured for converted engineering units with programmable real-time data connections for applications where post-processing is not feasible.

Features
- Conductivity, temperature, and pressure at 16 Hz (16 samples/second) or polled sample acquisition
- Integral pump and T-C ducted flow to minimize salinity spiking
- RS-232 interface, no memory or batteries
- Unique flow path, pumping regimen, and (optional) expendable anti-foulant devices
- Programmable real-time processing (calibration, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

Options
- Plastic (250 m) or titanium (7000 m or 10,500 m) housing
- XSG/AG or wet-pluggable MCBH connectors
- Strain-gauge pressure sensor in 1 of 4 ranges (up to 2000 m)
- Modular SBE 43F Dissolved Oxygen Sensor in 600 m or 7000 m housing
- Plastic (250 m) or titanium (1500 m) housing
Evolved from the technology behind the fleet of Argo Float CTDs, the Sea-Bird Scientific Glider Payload CTD (GPCTD) is a low-power package designed for integration with autonomous gliders. Each GPCTD comes with a modified SBE 5 pump. Data are collected in engineering units for easy integration into existing systems. The GPCTD can optionally be equipped with an SBE 43F Dissolved Oxygen sensor.

The GPCTD consumes only 175 mW when recording at 1 sample/second. One Alkaline D cell can operate the CTD for 114 hours of continuously pumped data collection. When installed in the glider, the T-C intake sail sits outside of the glider’s boundary layer to minimize sampling error while a pressure-proof casing houses the GPCTD’s electronics for installation within the glider’s flooded volume.

Features:
- Conductivity, temperature, pressure, and (optional) dissolved oxygen (modular SBE 43F DO sensor)
- Pressure-proof module allows for exchange of CTD (and DO sensor) without opening the glider pressure hull
- RS-232 interface, internal memory, and real-time output
- Four sampling modes:
 - Continuous (1 Hz)
 - Fast Interval (5-14 sec intervals)
 - Slow Interval (15-3600 sec intervals; CTD only)
- Unique flow path, pumping regimen, and (optional) expendable anti-foulant devices
- Programmable real-time processing (aligning, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

Options:
- Strain-gauge pressure sensor in 1 of 4 ranges (up to 2000 m)
- Modular SBE 43F Dissolved Oxygen Sensor in 600 m or 7000 m housing
- Plastic (250 m) or titanium (7000 m or 10,500 m) housing
- KSG/UG or wet-pluggable MCBH connectors
- Expendable anti-foulant devices
- Programmable real-time processing (aligning, filtering, and correcting for conductivity cell thermal mass effects)
- Depth to 350, 7000, or 10,500 m

The Sea-Bird Scientific SBE 49 FastCAT CTD is a miniaturization of profiling CTDs often used in shipboard operations, providing a solution for applications that require a compact CTD. With a fully integrated pump and temperature/conductivity/pressure sensors, the SBE 49 is a flexible option for uses ranging from small autonomous vehicles to standard profiling applications, with data quality comparable to much larger CTD packages.

The SBE 49 is able to sample with simple RS-232 commands and can automatically begin sampling at 16 Hz upon receiving power from an external source. Data output can be configured for converted engineering units with programmable real-time data connections for applications where post-processing is not feasible.

Features:
- Conductivity, temperature, and pressure at 16 Hz (16 samples/second) or polled sample acquisition
- Integral pump and T-C ducted flow to minimize salinity spiking
- RS-232 interface, no memory or batteries
- Unique flow path, pumping regimen, and (optional) expendable anti-foulant devices
- Programmable real-time processing (aligning, filtering, and correcting for conductivity cell thermal mass effects)
- Depths to 350, 7000, or 10,500 m

Options:
- Plastic (250 m) or titanium (7000 m or 10,500 m) housing
- KSG/UG or wet-pluggable MCBH connectors
- Expendable anti-foulant devices
- Programmable real-time processing (aligning, filtering, and correcting for conductivity cell thermal mass effects)
- Depth to 350, 7000, or 10,500 m

The Sea-Bird Scientific ECO-Puck is a miniaturization of the popular ECO sensor, providing a simple package for applications where space and power are limited. Available in single, dual, and three-channel configurations, the ECO-Puck options cover the same optical sensors as the standard line of ECO sensors, providing multiple parameters and wavelengths for a wide range of uses.

Features:
- Fully potted design
- Low power, compact design for integration with Digital RS-232 output
- User selectable sample rate (up to 8 Hz)

Available Configurations:
- Fluorometer (FL): Single-wavelength measurement of your choice of chlorophyll-a, CDOM, phycoerythrin, phycoerythrin, uranine (fluorescein), or rhodamine
- Combination Fluorometer-Turbidity Sensor (FUTU)
- Measures chlorophyll-a in μg/l and turbidity in NTU
- Single-wavelength Scattering Meter (SBM): Measures optical scattering at 100, 125, and 150 degrees
- Measures optical scattering at 117 degrees at your choice of 470, 532, or 650 nm wavelengths
- Volume Scattering Function Meter (VSF)
- Triple-Measurement Meter (Triplet)
- 2 scattering & 1 fluorescence, 1 scattering & 2 fluorescences, or 3 fluorescence measurements

The Deep SUNA is a redesign of the SUNA V2 for easy integration with AUVs of all types, incorporating the proven MBARI-ISUS nitrate measurement technology in a streamlined package. Deep SUNA provides real-time, chemical-free nitrate calculations in deep ocean environments using UV absorption technology.

Sea-Bird Scientific designed the Deep SUNA’s aluminum housing for installation on a moving platform to minimize any effects on the vehicle’s speed.

Features:
- Real-time nitrate calculation
- Real-time temperature/salinity compensation
- Full UV spectrum for maximum accuracy
- Autonomous profiling Float (APF) operating mode
- Corrosion-proof anodized aluminum housing with 2000 meter depth rating
- Simple software-based, in-field reference checks
- Accuracy and stability over a wide range of environmental conditions
- Adaptive sampling intelligence
AUV/ROV/Glider Sensors

Autonomous and remotely operated underwater vehicles are rapidly evolving to fill scientific niches, many with capabilities otherwise unattainable through traditional manned research at a fraction of the operating cost. Sea-Bird Scientific offers a line of sensors uniquely designed for integration with various unmanned underwater vehicles, expanding data potential and opening new doors for unique research opportunities.

OCR 500 Multispectral Radiometer

The OCR-500 Series Radiometers are digital optical sensors that combine precision optics and high performance microelectronics, designed for applications where performance, size, and power are key constraints. The OCR 500 is usable as a stand-alone device or in a networked environment as part of a larger system, providing radiance and irradiance measurements over multiple standard wavelengths from 400 – 865 nm.

Features
- Irradiance and Radiance measurements
- Standard wavelengths from 400 - 865 nm
- Fully characterized cosine response
- Custom, low fluorescence filters
- Networking capability
- Data logging and processing software
- Fast sampling rates (7 - 24 Hz options)

Options
- Four-channel and seven-channel discrete wavelength options available
- UV wavelengths available: 305, 325, 340 & 380 nm
- Compatible with the Biochek anti-biofouling solution

OCR 500 Multispectral Radiometer

While Sea-Bird Scientific originally designed most sensors for stand-alone applications, we have redesigned and miniaturized popular product lines meet the specific operational requirements of unmanned research platforms. A 1 kg CTD can now replace a 10 kg CTD while maintaining the same accuracy, and a precision optical sensor can now take up half the space while recording the same data channels.
SeaOWL UV-A™ Oil in Water Locator

Based on the highly successful Sea-Bird Scientific ECO sensor, Sea-Bird Scientific has developed the SeaOWL UV-A™ in-situ oil-in-water sensor, an industry-leading oil-detection technology with 5x optical resolution improvement over its predecessor.

The SeaOWL UV-A™ SLC version is specifically designed for integration with the Teledyne Webb Research Slocum Glider.

SeaOWL UV-A™ measures crude oil-in-water using the same UV-A excitation and blue emission wavelengths (370 nm EX/460 nm EM) currently used in the ECO CDOM fluorometer. The SeaOWL UV-A™ improves the resolution and range of the ECO with a greater depth of field, optimized electronics and dynamic gain stage modulation. The new dynamic gain provides industry leading sensitivity across a large detection range making saturation unlikely in even the most heavily impacted environments. The compact SeaOWL UV-A™ design also includes chlorophyll fluorescence and 700 nm backscattering measurements to discriminate crude oil from phytoplankton and other natural sources of FDOM.

Features
• Industry leading optical resolution
• Wide dynamic gain prevents measurement saturation even within heavily impacted environments
• Three parameters in a single sensor: chlorophyll, backscattering, and Fluorescent Dissolved Organic Matter (FDOM)
• Backscattering and chlorophyll fluorescence provide discrimination of crude oil from phytoplankton and other natural sources of FDOM
• OEM option for easy integration with the TWR Slocum Glider

OCR 500 Multispectral Radiometer

The OCR-500 Series Radiometers are digital optical sensors that combine precision optics and high performance microelectronics, designed for applications where performance, size, and power are key constraints. The OCR 500 is usable as a stand-alone device or in a networked environment as part of a larger system, providing radiance and irradiance measurements over multiple standard wavelengths from 400 – 865 nm.

Features
• Irradiance and Radiance measurements
• Wavelengths from 400 – 865 nm
• Fully characterized cosine response
• Custom, low fluorescence filters
• Networking capability
• Data logging and processing software
• Fast sampling rate (7 - 24 Hz options)

Options
• Four-channel and seven-channel discrete wavelength options available
• UV wavelengths available: 305, 325, 340 & 365 nm
• Fully compatible with the Bioshutter anti-biofouling solution

OCR 500 Multispectral Radiometer

A modular, low-power CTD designed for easy integration with autonomous gliders. Provides continuous sampling with sensors based on Sea-Bird’s in-situ ocean glider platform.

Features
• Backscattering and chlorophyll fluorescence provide discrimination of crude oil from phytoplankton and other natural sources of FDOM
• Wide dynamic gain prevents measurement saturation even within heavily impacted environments

Options
• Four-channel and seven-channel discrete wavelength options available
• UV wavelengths available: 305, 325, 340 & 365 nm
• Fully compatible with the Bioshutter anti-biofouling solution

Sea-Bird Scientific Deep SUNA on AUV

AUV/ROV/Glider Sensors

Autonomous and remotely operated underwater vehicles are rapidly evolving to fill scientific niches, many with capabilities otherwise unattainable through traditional manned research at a fraction of the operating cost. Sea-Bird Scientific offers a line of sensors uniquely designed for integration with various unmanned underwater vehicles, expanding data potential and opening new doors for unique research opportunities.

OCR 500 Multispectral Radiometer

The OCR-500 Series Radiometers are digital optical sensors that combine precision optics and high performance microelectronics, designed for applications where performance, size, and power are key constraints. The OCR 500 is usable as a stand-alone device or in a networked environment as part of a larger system, providing radiance and irradiance measurements over multiple standard wavelengths from 400 – 865 nm.

Features
• Industry leading optical resolution
• Wide dynamic gain prevents measurement saturation even within heavily impacted environments
• Three parameters in a single sensor: chlorophyll, backscattering, and Fluorescent Dissolved Organic Matter (FDOM)
• Backscattering and chlorophyll fluorescence provide discrimination of crude oil from phytoplankton and other natural sources of FDOM
• OEM option for easy integration with the TWR Slocum Glider

OCR 500 Multispectral Radiometer

A modular, low-power CTD designed for easy integration with autonomous gliders. Provides continuous sampling with sensors based on Sea-Bird’s in-situ ocean glider platform.

Features
• Backscattering and chlorophyll fluorescence provide discrimination of crude oil from phytoplankton and other natural sources of FDOM
• Wide dynamic gain prevents measurement saturation even within heavily impacted environments

Options
• Four-channel and seven-channel discrete wavelength options available
• UV wavelengths available: 305, 325, 340 & 365 nm
• Fully compatible with the Bioshutter anti-biofouling solution

Sea-Bird Scientific Deep SUNA on AUV

AUV/ROV/Glider Sensors

Autonomous and remotely operated underwater vehicles are rapidly evolving to fill scientific niches, many with capabilities otherwise unattainable through traditional manned research at a fraction of the operating cost. Sea-Bird Scientific offers a line of sensors uniquely designed for integration with various unmanned underwater vehicles, expanding data potential and opening new doors for unique research opportunities.